Automatic segmentation of long-term ECG signals corrupted with broadband noise based on sample entropy

نویسندگان

  • Pau Micó
  • Margarita Mora
  • David Cuesta-Frau
  • Mateo Aboy
چکیده

Biomedical signals are nonstationary in nature, namely, their statistical properties are time-dependent. Such changes in the underlying statistical properties of the signal and the effects of external noise often affect the performance and applicability of automatic signal processing methods that require stationarity. A number of methods have been proposed to address the problem of finding stationary signal segments within larger nonstationary signals. In this framework, processing and analysis are applied to each resulting locally stationary segment separately. The method proposed in this paper addresses the problem of finding locally quasi-stationary signal segments. Particularly, our proposed algorithm is designed to solve the specific problem of segmenting semiperiodic biomedical signals corrupted with broadband noise according to the various degrees of external noise power. It is based on the sample entropy and the relative sensitivity of this signal regularity metric to changes in the underlying signal properties and broadband noise levels. The assessment of the method was carried out by means of experiments on ECG signals drawn from the MIT-BIH arrhythmia database. The results were measured in terms of false alarms based on the changepoint detection bias. In summary, the results achieved were a sensitivity of 97%, and an error of 16% for records corrupted with muscle artifacts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal

Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

Adaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning

Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 98 2  شماره 

صفحات  -

تاریخ انتشار 2010